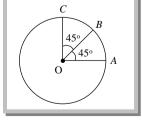


Practice Problems

Problems based on fundamentals of vector


1.	How many minimum number	of coplanar vectors having different magi	nitud	les can be added to give zero i	resuita	ant
	(a) 2	(b) 3	(c)	4	(d)	5
2.	A hall has the dimensions 10	$m \times 12 m \times 14 m$. A fly starting at one con	rner	ends up at a diametrically opp	posite	corner. What is the magnitude
	of its displacement					
	(a) 17 m	(b) 26 <i>m</i>	(c)	36 m	(d)	21 m
3.	$0.4\hat{i} + 0.8\hat{j} + c\hat{k}$ represents a	unit vector when c is				
	(a) -0.2	(b) $\sqrt{0.2}$	(c)	$\sqrt{0.8}$	(d)	0
4.	100 coplanar forces each equatorices	al to 10 N act on a body. Each force mal	kes a	angle $\pi/50$ with the preceding	ng for	ce. What is the resultant of the
	(a) 1000 N	(b) 500 N	(c)	250 N	(d)	Zero
5.	The magnitude of a given vect	for with end points $(4, -4, 0)$ and $(-2, -2)$	2, 0)	must be		
	(a) 6	(b) $5\sqrt{2}$	(c)	4	(d)	$2\sqrt{10}$
6.	The angles which a vector \hat{i} +	$\hat{j} + \sqrt{2} \hat{k}$ makes with X, Y and Z axes res	pecti	ively are		
	(a) $60^{\circ}, 60^{\circ}, 60^{\circ}$	(b) 45°, 45°, 45°	(c)	60°, 60°, 45°	(d)	45°, 45°, 60°
7.	The expression $\left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}\right)$	is a				
	(a) Unit vector	(b) Null vector	(c)	Vector of magnitude $\sqrt{2}$	(d)	Scalar
8.	Given vector $\vec{A} = 2\hat{i} + 3\hat{j}$, the	angle between \overrightarrow{A} and y-axis is				[CPMT 1993]
	(a) $\tan^{-1} 3/2$	(b) $\tan^{-1} 2/3$	(c)	$\sin^{-1} 2/3$	(d)	$\cos^{-1} 2/3$
9.	The unit vector along $\hat{i} + \hat{j}$ is					
	(a) \hat{k}	(b) $\hat{i} + \hat{j}$	(c)	$\frac{\hat{i} + \hat{j}}{\sqrt{2}}$	(d)	$\frac{\hat{i}+\hat{j}}{2}$
10.	A vector is represented by $3\hat{i}$	$+\hat{j}+2\hat{k}$. Its length in XY plane is				[EAMCET (Engg.) 1994]
	(a) 2	(b) $\sqrt{14}$	(c)	$\sqrt{10}$	(d)	$\sqrt{5}$
11.	Five equal forces of 10 <i>N</i> each will be	n are applied at one point and all are lying	g in c	one plane. If the angles between	en the	em are equal, the resultant force [CBSE PMT 1995]
	(a) Zero	(b) 10 <i>N</i>	(c)	20 N	(d)	$10\sqrt{2}N$
12.	The angle made by the vector	$A = \hat{i} + \hat{j}$ with x- axis is				[EAMCET (Engg.) 1999]
	(a) 90°	(b) 45°	(c)	22.5°	(d)	30°
13.	The value of a unit vector in the	ne direction of vector $A = 5\hat{i} - 12\hat{j}$, is				

Mathematics	In	Physics	39

(d) $(5\hat{i} - 12\hat{j})/13$

	(a) Parallel vectors w	which have the original vector as their	resultant				
	(b) Mutually perpend	dicular vectors which have the origina	al vector as their result	ant			
	(c) Arbitrary vectors	which have the original vector as the	ir resultant				
	(d) It is not possible	to resolve a vector					
15.	Angular momentum is	3					[MNR 1986]
	(a) A scalar	(b) A polar vector	(c) An a	axial vector	(d) 1	None of these	
16.	If a vector \overrightarrow{P} making	angles α , β , and γ respectively with t	he X , Y and Z axes res	pectively. Then si	$\sin^2 \alpha + \sin^2 \beta$	$\beta + \sin^2 \gamma =$	
	(a) 0	(b) 1	(c) 2		(d)	3	
		Problems bas	sed on addition o	f vectors	•		
17.	Two forces, each of m	agnitude F have a resultant of the sar	me magnitude F . The a	angle between the	two forces is	[C	BSE PMT 1990]
	(a) 45°	(b) 120°	(c) 150°	0	(d) 6	50°	
18.	For the resultant of the	e two vectors to be maximum, what n	nust be the angle betwe	een them			
	(a) 0°	(b) 60°	(c) 90°		(d) 1	180°	
19.	A particle is simultane	eously acted by two forces equal to 4	N and 3 N. The net for	ce on the particle	is		[CPMT 1979]
	(a) 7 N	(b) 5 <i>N</i>	(c) 1 N		(d) I	Between 1 N a	nd 7 <i>N</i>
20.	Two vectors \overrightarrow{A} and \overrightarrow{B}	B lie in a plane, another vector \vec{C} lies	outside this plane, ther	n the resultant of th	hese three vec	tors <i>i.e.</i> , $\overrightarrow{A} + \overrightarrow{B}$	$\vec{B} + \vec{C}$
	(a) Can be zero		(b) Can	not be zero			
	(c) Lies in the plane	containing $\vec{A} + \vec{B}$	(d) Lies	in the plane conta	aining $\vec{A} - \vec{B}$		
21.	If the resultant of the t	wo forces has a magnitude smaller th	an the magnitude of la	arger force, the two	o forces must	be	
	(a) Different both in	magnitude and direction	(b) Mut	ually perpendicula	ar to one anotl	ner	
	(c) Possess extremel	y small magnitude	(d) Poir	nt in opposite direc	ctions		
22.	Forces F_1 and F_2 acr	t on a point mass in two mutually per	pendicular directions.	The resultant force	e on the point	mass will be	
							[CPMT 1991]
	(a) $F_1 + F_2$	(b) $F_1 - F_2$	(c) $\sqrt{F_1}$	$\frac{1}{1} + F_2^2$	(d)	$F_1^2 + F_2^2$	
23.	Find the resultant of the	hree vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} shown	n in the following figur	re. Radius of the c	ircle is R.		

(c) $(\hat{i} + \hat{j})/13$

- **24.** If $|\overrightarrow{A} \overrightarrow{B}| = |\overrightarrow{A}| = |\overrightarrow{B}|$, the angle between \overrightarrow{A} and \overrightarrow{B} is
 - (a) 60°

(a) 2R

(c) $R\sqrt{2}$

(b) $R(1+\sqrt{2})$

(d) $R(\sqrt{2}-1)$

(b) 0°

(b) \hat{j}

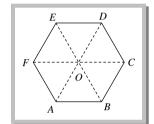
Any vector in an arbitrary direction can always be replaced by two (or three)

(a) \hat{i}

14.

(c) 120°

(d) 90°


- At what angle must the two forces (x + y) and (x y) act so that the resultant may be $\sqrt{(x^2 + y^2)}$ 25.
 - (a) $\cos^{-1}\left(-\frac{x^2+y^2}{2(x^2-y^2)}\right)$ (b) $\cos^{-1}\left(-\frac{2(x^2-y^2)}{x^2+y^2}\right)$ (c) $\cos^{-1}\left(-\frac{x^2+y^2}{x^2-y^2}\right)$ (d) $\cos^{-1}\left(-\frac{x^2-y^2}{x^2+y^2}\right)$

- Let the angle between two nonzero vectors \overrightarrow{A} and \overrightarrow{B} be 120° and resultant be \overrightarrow{C} 26.
 - (a) \vec{C} must be equal to $|\vec{A} \vec{B}|$

(b) \vec{C} must be less than $|\vec{A} - \vec{B}|$

(c) \overrightarrow{C} must be greater than $|\overrightarrow{A} - \overrightarrow{B}|$

- (d) \overrightarrow{C} may be equal to $|\overrightarrow{A} \overrightarrow{B}|$
- Fig. shows ABCDEF as a regular hexagon. What is the value of $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$ 27.
 - \overrightarrow{AO} (a)
 - $2\overrightarrow{AO}$ (b)
 - (c) $4\overrightarrow{AO}$
 - (d) $\overrightarrow{6AO}$

The magnitude of vector \vec{A} , \vec{B} and \vec{C} are respectively 12, 5 and 13 units and $\vec{A} + \vec{B} = \vec{C}$ then the angle between \vec{A} and \vec{B} is 28.

[CPMT 1997]

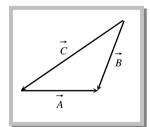
(a) 0

(b) π

(c) $\pi/2$

- (d) $\pi/4$
- Magnitude of vector which comes on addition of two vectors, $6\hat{i} + 7\hat{j}$ and $3\hat{i} + 4\hat{j}$ is 29.

[BHU 2000]


- (b) $\sqrt{13.2}$

- (c) $\sqrt{202}$
- 30. A particle has displacement of 12 m towards east and 5 m towards north then 6 m vertically upward. The sum of these displacements is

- (c) 14.31 m
- (d) None of these

- The three vectors $\vec{A} = 3\hat{i} 2\hat{j} + \hat{k}$, $\vec{B} = \hat{i} 3\hat{j} + 5\hat{k}$ and $\vec{C} = 2\hat{i} + \hat{j} 4\hat{k}$ form 31.
 - (a) An equilateral triangle
- (b) Isosceles triangle
- (c) A right angled triangle
- (d) No triangle

- 32. For the fig.
 - (a) $\vec{A} + \vec{B} = \vec{C}$
 - (b) $\vec{B} + \vec{C} = \vec{A}$
 - (c) $\vec{C} + \vec{A} = \vec{B}$
 - (d) $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$

- Let $\vec{C} = \vec{A} + \vec{B}$ then 33.
 - (a) $|\overrightarrow{C}|$ is always greater then $|\overrightarrow{A}|$

(b) It is possible to have $|\overrightarrow{C}| \triangleleft \overrightarrow{A}|$ and $|\overrightarrow{C}| \triangleleft \overrightarrow{B}|$

(c) C is always equal to A + B

- C is never equal to A + B
- The value of the sum of two vectors \overrightarrow{A} and \overrightarrow{B} with θ as the angle between them is 34.

[BHU 1996]

- (a) $\sqrt{A^2 + B^2 + 2AB\cos\theta}$ (b) $\sqrt{A^2 B^2 + 2AB\cos\theta}$
- (c) $\sqrt{A^2 + B^2 2AB \sin \theta}$ (d) $\sqrt{A^2 + B^2 + 2AB \sin \theta}$
- 35. Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously

					Λ	Aathematics In Physics 41
$\vec{F}_1 = -4\hat{i} - 5\hat{j} + 5\hat{k}, \ \vec{F}_2 = 5\hat{i}$	$+8\hat{j}$	$+6\hat{k}$, $\vec{F}_3 = -3\hat{i} + 4\hat{j} - 7\hat{k}$ and \vec{F}_4	$=2\hat{i}$	$-3\hat{j}-2\hat{k}$ then the particle w	ill m	ove
(a) In $x - y$ plane	(b)	In $y - z$ plane	(c)	In $x - z$ plane	(d)	Along x -axis
Following sets of three forces	act or	a body. Whose resultant cannot be	zero			[CPMT 1985]
(a) 10, 10, 10	(b)	10, 10, 20	(c)	10, 20, 20	(d)	10, 20, 40
When three forces of 50 N, 30	N and	d 15 N act on a body, then the body	is is			
(a) At rest	(b)	Moving with a uniform velocity	(c)	In equilibrium	(d)	Moving with an acceleration
The sum of two forces acting a are	ıt a po	oint is 16 N. If the resultant force is	8 N a	and its direction is perpendicul	ar to	minimum force then the forces [CPMT 1997]
(a) 6 N and 10 N	(b)	8 N and 8 N	(c)	4 N and 12 N	(d)	2 N and 14 N
If vectors P , Q and R have mag	gnituo	de 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$	R, the	e angle between Q and R is		[CEET 1998]
(a) $\cos^{-1} \frac{5}{12}$	(b)	$\cos^{-1}\frac{5}{13}$	(c)	$\cos^{-1}\frac{12}{13}$	(d)	$\cos^{-1}\frac{7}{13}$
The resultant of two vectors <i>A</i> between <i>A</i> and <i>B</i> is	and .	B is perpendicular to the vector A a	and its	s magnitude is equal to half th	ne ma	gnitude of vector B. The angle
(a) 120°	(b)	150°	(c)	135°	(d)	None of these
What vector must be added to	the tv	vo vectors $\hat{i} - 2\hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} - \hat{j}$	$-\hat{k}$, so	o that the resultant may be a u	nit ve	ctor along x-axis
						[BHU 1990]
(a) $2\hat{i} + \hat{j} - \hat{k}$	(b)	$-2\hat{i}+\hat{j}-\hat{k}$	(c)	$2\hat{i} - \hat{i} + \hat{k}$	(d)	$-2\hat{i}-\hat{j}-\hat{k}$
			` ′	- v y . w	(4)	2. <i>j</i>
What is the angle between P	and t	he resultant of $(\vec{P} + \vec{Q})$ and $(\vec{P} - \vec{Q})$!)			
(a) Zero	` ′	$\tan^{-1} P/Q$	` ′	$\tan^{-1} Q/P$	(d)	$\tan^{-1}(P-Q)/(P+Q)$
The resultant of \overrightarrow{P} and \overrightarrow{Q} is j	perpe	ndicular to \overrightarrow{P} . What is the angle be	etwee	n \overrightarrow{P} and \overrightarrow{Q}		
(a) $\cos^{-1}(P/Q)$	(b)	$\cos^{-1}(-P/Q)$	(c)	$\sin^{-1}(P/Q)$	(d)	$\sin^{-1}\left(-P/Q\right)$
Maximum and minimum mag relations is true	nitud	es of the resultant of two vectors	of ma	agnitudes P and Q are in the	ratio	3:1. Which of the following
(a) $P=2Q$	(b)	P = Q	(c)	PQ = 1	(d)	None of these
The resultant of $\vec{A} + \vec{B}$ is \vec{R}_1 .	On	reversing the vector \overrightarrow{B} , the resultan	t beco	omes \vec{R}_2 . What is the value of	R_1^2	$+R_{2}^{2}$
(a) $A^2 + B^2$	(b)	$A^2 - B^2$	(c)	$2(A^2+B^2)$	(d)	$2(A^2 - B^2)$
The resultant of two vectors \vec{P}	and	\overrightarrow{Q} is \overrightarrow{R} . If Q is doubled, the new	resul	tant is perpendicular to P. The	en R e	equals
(a) <i>P</i>	(b)	(<i>P</i> + <i>Q</i>)	(c)	Q	(d)	(P-Q)
Two forces, F_1 and F_2 are at the angle between the two forces.		on a body. One force is double that	t of t	he other force and the resultar	nt is e	qual to the greater force. Then
(a) $\cos^{-1}(1/2)$	(b)	$\cos^{-1}(-1/2)$	(c)	$\cos^{-1}(-1/4)$	(d)	$\cos^{-1}(1/4)$
Given that $\vec{A} + \vec{B} = \vec{C}$ and that	\vec{C} is	s \perp to \overrightarrow{A} . Further if $ \overrightarrow{A} = \overrightarrow{C} $, th	en wl	nat is the angle between \overrightarrow{A} and	\vec{B}	
(a) $\frac{\pi}{4}$ radian	(b)	$\frac{\pi}{2}$ radian	(c)	$\frac{3\pi}{4}$ radian	(d)	π radian
7		Problems based on sub		7		

CLICK HERE

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

- 49. Figure below shows a body of mass M moving with the uniform speed on a circular path of radius, R. What is the change in acceleration in going from P_1 to P_2
 - (a) Zero

$$v^2/2R$$

$$2v^2/R$$

$$\frac{v^2}{R} \times \sqrt{2}$$

A body is at rest under the action of three forces, two of which are $\vec{F}_1 = 4\hat{i}$, $\vec{F}_2 = 6\hat{j}$, the third force is 50.

(a)
$$4\hat{i} + 6\hat{j}$$

(b)
$$4\hat{i} - 6\hat{j}$$

(c)
$$-4\hat{i}+6\hat{j}$$

(d)
$$-4\hat{i} - 6\hat{j}$$

- A plane is revolving around the earth with a speed of 100 km/hr at a constant height from the surface of earth. The change in the velocity as it 51. travels half circle is [RPET 1998; KCET 2000]
 - (a) 200 km/hr
- (b) 150 km/hr

(c)
$$100 \sqrt{2} \, km / hr$$

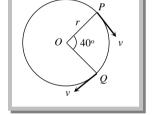
- (d) 0
- 52. What displacement must be added to the displacement $25\hat{i} - 6\hat{j}$ m to give a displacement of 7.0 m pointing in the x-direction

(a)
$$18\hat{i} - 6\hat{j}$$

(b)
$$32\hat{i} - 13\hat{j}$$

(c)
$$-18\hat{i} + 6\hat{j}$$

(d)
$$-25\hat{i} + 13\hat{j}$$


53. A body moves due East with velocity 20 km/hour and then due North with velocity 15 km/hour. The resultant velocity [AFMC 1995]

- (a) 5 km/hour
- (b) 15 km/hour
- (c) 20 km/hour
- (d) 25 km/hour
- 54. A particle is moving on a circular path of radius r with uniform velocity v. The change in velocity when the particle moves from P to Q is $(\angle POQ = 40^{\circ})$
 - $2v\cos 40^{\circ}$ (a)
 - (b)

2v sin 40°

(c)

- 2v sin 20°
- (d)
- $2v\cos 20^{\circ}$

55. The length of second's hand in watch is 1 cm. The change in velocity of its tip in 15 seconds is [MP PMT 1987]

- (a) Zero
- (b) $\frac{\pi}{30\sqrt{2}}$ cm/sec
- (c) $\frac{\pi}{30}$ cm / sec
- (d) $\frac{\pi\sqrt{2}}{30}$ cm/sec
- 56. A particle moves towards east with velocity 5 m/s. After 10 seconds its direction changes towards north with same velocity. The average acceleration of the particle is [CPMT 1997; IIT-JEE 1982]
 - (a) Zero
- (b) $\frac{1}{\sqrt{2}} m / s^2 N W$
- (c) $\frac{1}{\sqrt{2}}m/s^2N E$ (d) $\frac{1}{\sqrt{2}}m/s^2S W$

Problems based on scalar product of vectors

Consider two vectors $\vec{F}_1 = 2\hat{i} + 5\hat{k}$ and $\vec{F}_2 = 3\hat{j} + 4\hat{k}$. The magnitude of the scalar product of these vectors is 57.

[MP PMT 1987]

- (c) $5\sqrt{33}$
- (d) 26

Consider a vector $\vec{F} = 4\hat{i} - 3\hat{j}$. Another vector that is perpendicular to \vec{F} is 58.

					N	Mathematics Ir	Physics 43
	(a) $4\hat{i} + 3\hat{j}$	(b) $6\hat{i}$	(c)	$7\hat{k}$	(d)	$3\hat{i}-4\hat{j}$	
59.	Two vectors \overrightarrow{A} and \overrightarrow{B}	are at right angles to each other, when	hen				[AIIMS 1987]
	(a) $\vec{A} + \vec{B} = 0$	(b) $\vec{A} - \vec{B} = 0$	(c)	$\vec{A} \times \vec{B} = 0$	(d)	$\vec{A} \cdot \vec{B} = 0$	
60.	If $ \overrightarrow{V}_1 + \overrightarrow{V}_2 = \overrightarrow{V}_1 - \overrightarrow{V}_2 $	$_{2}$ and V_{2} is finite, then					[CPMT 1989]
	(a) V_1 is parallel to V_1	' 2	(b)	$\vec{V}_1 = \vec{V}_2$			
	(c) V_1 and V_2 are mu	itually perpendicular	(d)	$ \overrightarrow{V}_1 = \overrightarrow{V}_2 $			
61.	A force $\vec{F} = (5\hat{i} + 3\hat{j}) N$ the particle is	lewton is applied over a particle wh	nich displaces it fr	om its origin to t	the point $\vec{r} = (2\hat{i} - \hat{i})$		e work done on [MP PMT 1995]
	(a) – 7 <i>joules</i>	(b) +13 <i>joules</i>	(c)	+7 joules	(d)	+11 joules	
62.	The angle between two	vectors $-2\hat{i} + 3\hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} -$	$4\hat{k}$ is			[EAMCET 1990]
	(a) 0°	(b) 90°	(c)	180°	(d)	None of the ab	oove
63.	The angle between the v	vectors $(\hat{i} + \hat{j})$ and $(\hat{j} + \hat{k})$ is				I	EAMCET 1995]
	(a) 30°	(b) 45°	, ,	60°	` '	90°	
64.	A particle moves with a applied to the particle is	a velocity $6\hat{i} - 4\hat{j} + 3\hat{k} m / s$ under	the influence of a	a constant force	$\vec{F} = 20\hat{i} + 15\hat{j} - 5$	$5\hat{k}$ N. The insta [CBSE PMT 20]	
	(a) 35 <i>J/s</i>	(b) 45 <i>J/s</i>	(c)	25 J/s	(d)	195 <i>J/s</i>	
65.	If $\overrightarrow{P}.\overrightarrow{Q} = PQ$, then angle	e between \overrightarrow{P} and \overrightarrow{Q} is					[AIIMS 1999]
	(a) 0°	(b) 30°		45°		60°	
66.		$f_1 = 2\hat{i} - 3\hat{j} + 3\hat{k}$ (N) and $F_2 = \hat{i} + \hat{j}$		a body and disp	lace it from the p	osition $r_1 = \hat{i} +$	$2\hat{j} - 2\hat{k}$ (m) to
	the position $r_2 = 7\hat{i} + 1$	$0\hat{j} + 5\hat{k}$ (m). What is the work don					
	(a) 9 <i>J</i>	(b) 41 <i>J</i>	` ′	-3J		None of these	
67.		$4\hat{k}$ acting on a body, produces a dis	splacement $S = 6$	$\hat{i} - 5\hat{k}$. Work dor	e by the force is	[KCET 1999]	
	(a) 10 units	(b) 18 units → ¬ ¬ ¬		11 units	(d)	5 units	
68.		two vector $\vec{A} = 5\hat{i} + 5\hat{j}$ and $\vec{B} = 5\hat{j}$					[CPMT 2000]
	(a) Zero	(b) 45°		90°		180°	
69.		$+3\hat{k}$ and $\vec{Q} = a\hat{i} - 2\hat{j} - \hat{k}$ are perp				[AFMC 2000]	
	(a) 3	(b) 4	(c)			13	
70.	in moving the body a di	move in the <i>Y</i> -direction is subjected stance 10 <i>m</i> along the <i>Y</i> -axis				[0	ne by this force BSE PMT 1994]
	(a) $20 J$	(b) 150 <i>J</i>		160 J		190 <i>J</i> →	
71.		he x - y plane under the action of			e of its liner mo		
	•	t. The angle θ between \overrightarrow{F} and \overrightarrow{P}	at a given time t.	will be			[UPSEAT 2000]
	(a) $\theta = 0^{\circ}$	(b) $\theta = 30^{\circ}$	` '	$\theta = 90^{\circ}$	•	$\theta = 180^{\circ}$	
		Problems based	l on cross pro	duct of vecto	ors		
72.	The area of the parallelo	ogram represented by the vectors \overrightarrow{A}	$\hat{A} = 2\hat{i} + 3\hat{i}$ and \bar{B}	$\vec{B} = \hat{i} + 4\hat{j}$ is			
. —•	(a) 14 units	(b) 7.5 units		10 units	(d)	5 units	
73.	For any two vectors \overrightarrow{A}	and \vec{B} if $\vec{A} \cdot \vec{B} = \vec{A} \times \vec{B} $, the majority	gnitude of $\vec{C} = \vec{A}$	\overrightarrow{B} is equal to	. ,		

(a)
$$\sqrt{A^2 + B^2}$$

(b)
$$A + B$$

(c)
$$\sqrt{A^2 + B^2 + \frac{AB}{\sqrt{2}}}$$
 (d) $\sqrt{A^2 + B^2 + \sqrt{2} \times AB}$

(d)
$$\sqrt{A^2 + B^2 + \sqrt{2} \times AB}$$

A vector \vec{F}_1 is along the positive X-axis. If its vector product with another vector \vec{F}_2 is zero then \vec{F}_2 could be 74.

(a)
$$4\hat{j}$$

(b)
$$-(\hat{i} + \hat{j})$$

(c)
$$(\hat{j} + \hat{k})$$

(d)
$$(-4\hat{i})$$

If for two vectors \overrightarrow{A} and \overrightarrow{B} , $\overrightarrow{A} \times \overrightarrow{B} = 0$, the vectors 75.

(a) Are perpendicular to each other (b)

Are parallel to each other

(c) Act at an angle of 60°

(d) Act at an angle of 30°

The angle between vectors $(\overrightarrow{A} \times \overrightarrow{B})$ and $(\overrightarrow{B} \times \overrightarrow{A})$ is 76.

(c)
$$\pi/4$$

(d)
$$\pi/2$$

What is the angle between $(\vec{P} + \vec{Q})$ and $(\vec{P} \times \vec{Q})$ 77.

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{4}$$

78. The resultant of the two vectors having magnitude 2 and 3 is 1. What is their cross product

Which of the following is the unit vector perpendicular to \overrightarrow{A} and \overrightarrow{B} 79.

(a)
$$\frac{\hat{A} \times \hat{B}}{AB \sin \theta}$$

(b)
$$\frac{\hat{A} \times \hat{B}}{AB \cos \theta}$$

(c)
$$\frac{\vec{A} \times \vec{B}}{AB \sin \theta}$$

(d)
$$\frac{\vec{A} \times \vec{B}}{AB \cos \theta}$$

Let $\vec{A} = \hat{i}A\cos\theta + \hat{j}A\sin\theta$ be any vector. Another vector \vec{B} which is normal to A is 80.

[BHU 1997]

(a)
$$\hat{i} B \cos \theta + i B \sin \theta$$
 (b) $\hat{i} B \sin \theta + i B \cos \theta$

(b)
$$\hat{i} B \sin \theta + i B \cos \theta$$

(c)
$$\hat{i} B \sin \theta - i B \cos \theta$$

(d)
$$\hat{i} B \cos \theta - j B \sin \theta$$

The angle between two vectors given by $6\vec{i} + 6\vec{j} - 3\vec{k}$ and $7\vec{i} + 4\vec{j} + 4\vec{k}$ is 81.

[EAMCET (Engg.) 1999]

(a)
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (b) $\cos^{-1}\left(\frac{5}{\sqrt{3}}\right)$

(b)
$$\cos^{-1}\left(\frac{5}{\sqrt{3}}\right)$$

(c)
$$\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(d)
$$\sin^{-1}\left(\frac{\sqrt{5}}{3}\right)$$

A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is 82.

[UPSEAT 2000]

- (b) Along west
- (c) Along east
- (d) Vertically downward

Angle between the vectors $(\hat{i} + \hat{j})$ and $(\hat{j} - \hat{k})$ is 83.

180°

(d) 60°

Two vectors $P = 2\hat{i} + b\hat{j} + 2\hat{k}$ and $Q = \hat{i} + \hat{j} + \hat{k}$ will be parallel if 84.

- (b) b = 1

(c) b = 2

The position vectors of points A, B, C and D are $A = 3\hat{i} + 4\hat{j} + 5\hat{k}$, $B = 4\hat{i} + 5\hat{j} + 6\hat{k}$, $C = 7\hat{i} + 9\hat{j} + 3\hat{k}$ and $D = 4\hat{i} + 6\hat{j}$ then the 85. displacement vectors AB and CD are

- (a) Perpendicular
- (b) Parallel

- (c) Antiparallel
- (d) Inclined at an angle of 60°

Which of the following is not true? If $\vec{A} = 3\hat{i} + 4\hat{j}$ and $\vec{B} = 6\hat{i} + 8\hat{j}$ where A and B are the magnitudes of \vec{A} and \vec{B} 86.

- (a) $\vec{A} \times \vec{B} = 0$
- (b) $\frac{A}{R} = \frac{1}{2}$

- (c) $\overrightarrow{A} \cdot \overrightarrow{B} = 48$
- (d) A = 5

If force $(\vec{F}) = 4\hat{i} + 5\hat{j}$ and displacement $(\vec{s}) = 3\hat{i} + 6\hat{k}$ then the work done is 87.

[Manipal 1995]

(c) 6×3

(d) 4×6

If $|\overrightarrow{A} \times \overrightarrow{B}| = |\overrightarrow{A} \cdot \overrightarrow{B}|$, then angle between \overrightarrow{A} and \overrightarrow{B} will be 88.

[AIIMS 2000; Manipal 2000]

	N	1athemati	cs In	Physics	45
(d)	90°			
				[CPMT	1990]
(d)	$\hat{k} \cdot \hat{j} = 1$			

89. In an clockwise system

(b) 45°

(c) 60°

89. In an clockwise syste

(a) 30°

(a) $\hat{i} \times \hat{k} = \hat{i}$

(b) $\hat{i} \cdot \hat{i} = 0$

(c) $\hat{j} \times \hat{j} = 1$

90. The linear velocity of a rotating body is given by $\vec{v} = \vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector. The angular velocity of a body is $\vec{\omega} = \hat{i} - 2\hat{j} + 2\hat{k}$ and the radius vector $\vec{r} = 4\hat{j} - 3\hat{k}$, then $|\vec{v}|$ is

(a) $\sqrt{29}$ units

(b) $\sqrt{31}$ units

(c) $\sqrt{37}$ units

(d) $\sqrt{41}$ units

91. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the relation $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \cdot \vec{c} = 0$. The vector \vec{a} is parallel to

[AIIMS 1996]

(a) \vec{b}

(b) \vec{c}

(c) $\vec{b} \cdot \vec{c}$

(d) $\vec{b} \times \vec{c}$

92. The diagonals of a parallelogram are $2\hat{i}$ and $2\hat{j}$. What is the area of the parallelogram

(a) 0.5 units

(b) 1 unit

(c) 2 un

(d) 4 units

93. What is the unit vector perpendicular to the following vectors $2\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} - 3\hat{j} + 2\hat{k}$

(a) $\frac{\hat{i} + 10\hat{j} - 18\hat{k}}{5\sqrt{17}}$

(b) $\frac{\hat{i} - 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$

(c) $\frac{\hat{i} - 10\hat{j} - 18\hat{k}}{5\sqrt{17}}$

(d) $\frac{\hat{i} + 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$

94. The area of the parallelogram whose sides are represented by the vectors $\hat{j} + 3\hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$ is

(a) $\sqrt{61}$ sq.unit

(b) $\sqrt{59}$ sq.unit

(c) $\sqrt{49}$ sq.unit

(d) $\sqrt{52}$ sq.unit

95. The area of the triangle formed by $2\hat{i} + \hat{j} - \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ is

(a) 3 sq.unit

(b) $2\sqrt{3}$ sq. unit

(c) $2\sqrt{14}$ sq. unit

(d) $\frac{\sqrt{14}}{2}$ sq. unit

96. The position of a particle is given by $\vec{r} = (\vec{i} + 2\vec{j} - \vec{k})$ momentum $\vec{P} = (\vec{3}\vec{i} + 4\vec{j} - 2\vec{k})$. The angular momentum is perpendicular to

[EAMCET (Engg.) 1998]

(a) x-axis

(b) y-axis

(c) z-axis

(d) Line at equal angles to all the three axes

97. Two vector A and B have equal magnitudes. Then the vector A + B is perpendicular to

(a) $A \times B$

(b) A - B

(c) 3A - 3B

(d) All of these

98. Find the torque of a force $\vec{F} = -3\hat{i} + \hat{j} + 5\hat{k}$ acting at the point $\vec{r} = 7\hat{i} + 3\hat{j} + \hat{k}$

[CPMT 1997]

(a) $14\hat{i} - 38\hat{j} + 16\hat{k}$

(b) $4\hat{i} + 4\hat{j} + 6\hat{k}$

(c) $21\hat{i} + 4\hat{j} + 4\hat{k}$

(d) $-14\hat{i} + 34\hat{j} - 16\hat{k}$

99. The value of $(\overrightarrow{A} + \overrightarrow{B}) \times (\overrightarrow{A} - \overrightarrow{B})$ is

[RPET 1991]

(a) 0

(b) $A^2 - B^2$

(c) $\vec{B} \times \vec{A}$

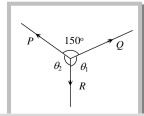
(d) $2(B \times A)$

100. A particle of mass m = 5 is moving with a uniform speed $v = 3\sqrt{2}$ in the *XOY* plane along the line Y = X + 4. The magnitude of the angular momentum of the particle about the origin is **[CBSE PMT 1990]**

(a) 60 units

(b) $40\sqrt{2}$ units

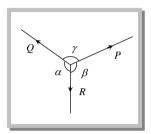
(c) Zero


(d) 7.5 units

Problems based on Lami's theorem

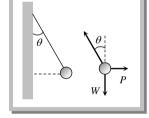
101. P, Q and R are three coplanar forces acting at a point and are in equilibrium. Given $P = 1.9318 \, kg \, wt$, $\sin \theta_1 = 0.9659$, the value of R is (in $kg \, wt$)

(a) 0.9659


(b) 2

- (c) 1
- (d) $\frac{1}{2}$
- **102.** A body is in equilibrium under the action the action of three coplanar forces P, Q and R as shown in the figure. Select the correct statement
 - (a) $\frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma}$
 - (b) $\frac{P}{\cos \alpha} = \frac{Q}{\cos \beta} = \frac{R}{\cos \gamma}$
 - (c) $\frac{P}{\tan \alpha} = \frac{Q}{\tan \beta} = \frac{R}{\tan \gamma}$
 - (d) $\frac{P}{\sin \beta} = \frac{Q}{\sin \gamma} = \frac{R}{\sin \alpha}$

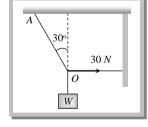
- 103. If a body is in equilibrium under a set of non-collinear forces, then the minimum number of forces has to be [AIIMS 2000]
 - (a) Four
- (b) Three


(c) Two

- (d) Five
- 104. How many minimum number of non-zero vectors in different planes can be added to give zero resultant
 - (a) 2

(b) 3

(c) 4


- (d) 5
- **105.** A metal sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The forces acting on the sphere are shown in the second diagram. Which of the following statements is wrong
 - (a) $P = W \tan \theta$
 - (b) $\vec{T} + \vec{P} + \vec{W} = 0$
 - (c) $T^2 = P^2 + W^2$
 - (d) T = P + W

106. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newton are

[DPMT 1992]

- (a) $30\sqrt{3}$, 30
- (b) $30\sqrt{3}$, 60
- (c) $60\sqrt{3}$, 30
- (d) None of these

Problems based on relative velocity

- **107.** A 150 m long train is moving to north at a speed of 10 m/s. A parrot flying towards south with a speed of 5 m/s crosses the train. The time taken by the parrot the cross to train would be: [CBSE PMT 1992]
 - (a) 30 s
- (b) 15 s

(c) 8 s

- (d) 10 s
- 108. A swimmer can swim in still water with speed v and the river is flowing with velocity v/2. To cross the river in shortest time, he should swim making angle θ with the upstream. What is the ratio of the time taken to swim across the shortest time to that is swimming across over shortest distance
 - (a) $\cos \theta$
- (b) $\sin \theta$

(c) $\tan \theta$

(d) $\cot \theta$

					•
109.	The speed of a boat is 5 km/river water is	/h in still water. It crosses a rive	er of width 1 km along the shortest poss	-	elocity of th
	(a) 1 <i>km/h</i>	(b) $3 km/h$	(c) 4 km/h	(d) 5 km/h	
110.		to west at a speed of 5 m/min. shortest time. He should swim	A man on south bank of river, capable	of swimming 10m/min in still	water, want
	(a) Due north				
	(b) Due north-east				
	(c) Due north-east with do	ouble the speed of river			
	(d) None of these				
111.		he exactly opposite point on the The speed of water in the stream	bank of a stream is swimming with a sp	peed of 0.5 m/s at an angle of [CBSE PMT 1999]	
	(a) 1 <i>m/s</i>	(b) $0.5 m/s$	(c) $0.25 m/s$	(d) 0.433 <i>m/s</i>	
112.	A moves with 65 km/h while	e B is coming back of A with 80	0 km/h. The relative velocity of B with re	espect to A is	[AFMC 2000
	(a) 80 km/h	(b) 60 km/h	(c) 15 km/h	(d) 145 km/h	
113.	A man crosses a 320 m wic current, then the speed of the		rrent in 4 minutes. If in still water he c	•	es that of th
	(a) 30	(b) 40	(c) 50	(d) 60.	
114.		0 0 1	ng with a speed of 9 m/s . A police mar om the motor cycle is 100 m , how long	-	_
	(a) 1 second	(b) 19 second	(c) 90 second	(d) 100 second	
115.		ocity 10 m/s on a straight road. act velocity should the scooteris	A scooterist wishes to overtake the bus t chase the bus	in 100 s. If the bus is at a dis	tance of 1 ki
	(a) $50 m/s$	(b) $40 m/s$	(c) 30 m/s	(d) $20 m/s$	
116.			to cross a river of width d flowing with the following statement is correct	a velocity u ($u > v$). The dis	tance throug
	(a) If he crosses the river i	n minimum time $x = \frac{du}{v}$			
	(b) x can not be less than $\frac{1}{x}$	$\frac{du}{v}$			
	(c) For x to be minimum h	e has to swim in a direction ma	king an angle of $\frac{\pi}{2} + \sin^{-1} \left(\frac{v}{u} \right)$ with the	e direction of the flow of water	er
	(d) x will be max. if he sw	ims in a direction making an an	agle of $\frac{\pi}{2} + \sin^{-1} \frac{v}{u}$ with direction of the	e flow of water	

${\mathcal A}$ nswer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	d	b	d	d	с	a	b	С	С
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	b	d	С	С	С	b	a	d	b
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
d	С	b	a	a	С	d	С	С	С
31.	32.	33.	34.	35.	36.	37•	38.	39.	40.
С	С	b	a	b	d	d	a	С	b
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
b	a	b	a	С	С	С	С	d	d
51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
a	С	d	b	d	b	a	С	d	С
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
С	b	С	b	a	a	a	С	a	b
71.	72.	73.	74.	75.	76.	77•	78.	79.	80.
С	b	d	d	b	b	b	d	С	С
81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
d	b	d	С	С	С	a	b	a	a
91.	92.	93.	94.	95.	96.	97.	98.	99.	100.
d	С	С	b	d	a	a	a	d	a
101.	102.	103.	104.	105.	106.	107.	108.	109.	110.
С	a	b	С	d	b	d	b	b	a
111.	112.	113.	114.	115.	116.				
С	С	а	d	d	a, c				

